EN

AGM隔板制造专家 · 实力打造品牌 · 品质驱动世界

集团新闻行业动态

隆子PP、PE、AGM隔板的优缺点

发表时间:2023-02-08 访问量:142686

1.隔板综述 

      隆子AGM隔板是蓄电池的重要组成,不属于活性物质。在某些情况下甚至于起着决定性的作用。其本身材料为电子绝缘体,而其多孔性使其具有离子导电性。隔板的电阻是隔板的重要性能,它由隔板的厚度、孔率、孔的曲折程度决定,对蓄电池高倍率放电的容量和端电压水平具有重要影响;隔板在硫酸中的稳定性直接影响蓄电池的寿命;隔板的弹性可延缓正极活性物质的脱落;隔板孔径大小影响着铅枝晶短路程度。 隆子铅酸蓄电池隆子AGM隔板

8dd3d33a2a6d5ac15c1fd44a53394f3b.jpg

      由于隔板对铅蓄电池性能多方面的作用,隔板发展的每次质量的提高,无不伴随着铅蓄电池性能的提高。隔板的主要作用是防止正、负极短路,但又不能使电池内阻明显增加。因此,隔板应是多孔质的,允许电解液自由扩散和离子迁移,并具有比较小的电阻。当活性物质有些脱落时,不得通过细孔而达到对面极板,即孔径要小,孔数要多,其间隙的总面积要大;此外,还要求机械强度好,耐酸腐蚀,耐氧化,以及不析出对极板有害的物质。 20 世纪50 年代起动用蓄电池主要用木隔板,由于必须在湿润的条件下使用,造成负极板易氧化,初充电时间长,也无法用于干荷式铅蓄电池。尤其是木隔板在硫酸中不耐氧化腐蚀,致使蓄电池寿命短。为了提高铅蓄电池寿命,提出木隔板与玻璃丝棉并用隔板,使蓄电池寿命成倍地增加,但电池内阻增加,对电池容量、起动放电有不利影响,还能满足当时的标准要求。 

      20世纪60年代中期,出现了微孔橡胶隔板,由于它具有较好的耐酸性和耐氧化腐蚀性,明显地提高了蓄电池寿命。并促进蓄电池结构改进,减小了极板中心距离,使蓄电池起动放电性能和体积比能量有较大的提高。正因为微孔橡胶隔板的优良性能,从20世纪70 年代至90 年代初期,在铅蓄电池待业中占统治地位。微孔橡胶隔板的缺点是:被电解液浸渍的速度较慢,除热带地区外,缺乏资源,制造工艺较复杂,成本价格贵。

      另外,不易制成较薄的成品( 厚度在1mm 以下就困难)在微孔橡胶隔板生产的同时,还出现了烧结式 PVC 隔板以及后来相继出现的软质聚氧氯乙烯隔板,该种隔板同橡胶隔板相差不大,但在80年代很畅销。 从1993 年,由于微孔橡胶隔板成本提高,因而形成PVC隔板供不应求的局面。20世纪90年代相继出现PP( 聚丙烯) 隔板、PE( 聚乙烯) 隔板和超细玻璃纤维隔板(商品各为10-G) 及其它们的复合隔板。也曾出现纤维纸隔板,其电阻、孔率方面均较好,但耐腐蚀和机械强度较差,孔径也较大,因此未能大批量使用。

      目前国际上,特别是美国、西欧汽车型蓄电池大量使用的是聚乙烯袋式隔板。PE隔板具有较小的孔径,极低的电阻和极薄的基底,易于做成袋式,适用于蓄电池的连续化生产。但是目前国内尚未国产化大批生产,与此隔板相适应的装配线(包括配组机)也有限,所以使用尚不普遍;PP隔板和10-G逐渐为汽车型蓄电池厂家所接受。

      密闭阀控式铅酸蓄电池主要是在用AGM(吸附式玻璃纤维隔板),以下我们主要介绍一下AGM隔板.

2. 超细玻璃纤维隔板 

      目前,在阀控式铅酸蓄电池中普遍使用超细玻璃纤维隔板(AGM),该隔板的主要功能是可使电极间的离子流动,具有极高的孔率;大的比表面积及良好的润湿性是能够吸附更大量的电解液的隔板主要特性。隔板在电池内必须具有长期稳定的耐化学及电化学腐蚀能力,它不能释放出任何增加气体析出速率、腐蚀或自放电的物质,另外还要具有良好的抗张强度以保证隔板在电池的生产装配过程中不会被尖锐的边缘或小颗粒刺穿。隔板是蓄电池生产中一个重要部件,它的优劣直接影响蓄电池的放电容量和充放循环使用寿命,因此必须对蓄电池隔板的选择和研究加以重视。

      隔板在电池中总的来说应具有以下几点要求:

 I. 防止正负电极板互相接触而发生电池内部短路; 

II. 使电池装配紧密,缩小电池体积; 

III.防止极板变形,弯曲和活性物质脱落; 

IV.在极板间的多孔性隔板中贮存必要数量的电解液,以保证较高的导电性和电池反应的要求;

 V. 阻止一些对电极有害的物质通过隔进行迁移和扩散。 

要保证隔板在电池中顺利地发挥上述作用,则对隔板本身还必须有一定的要求。

      下面所讲的各种要求, 随着电池作用性况的不同往往各有侧重。总的来说,对隔板的质量有如下一些要求:

 I. 隔板材料本身是绝缘体,但做成隔板则必须有疏松多孔结构,且能吸放大量的电解质溶液;

 II. 隔板的化学稳定性要好,必须耐硫酸腐蚀、耐氧化和老化; 

III. 隔板应具有较大的机械强度和弹性,便于生产中安装;

IV. 隔板应具有较好的润湿性,即它应能很快地被电解液硫酸浸透; 

V. 隔板中不能有在硫酸溶液中能浸出对电池有害的杂质; 

VI. 隔板的表面颜色应基本一致,不允许有裂纹和穿孔; 

VII. 隔板浸在电解液硫酸溶液中的电阻要小; 

VIII. 隔板应具有较宽广的使用温度范围; 

IX. 隔板应具有一定的孔率,且孔径的一致性要高; 

X. 对软质隔板要具有符合要求的收缩或膨胀率; 

XI. 对软质隔板应具有较好的耐折性; 

XII. 隔板的干厚度及均匀性应符合指标要求;

3. 超细玻璃纤维隔板的结构和特性 

      此种隔板由不含任何有机粘结剂的直径为0.5~4um的超细玻璃纤维所组成。经抄纸法制成非压缩玻璃纤维纸,其结构为多层毡状,由无序排列的玻璃纤维形成相对小而高曲径的自由通道。该隔板在许多方面具备了明显优于普通电池隔板的性能。

总的来说,它具有以下主要特性:

I. 吸液量高,吸液速度快,亲水性好,吸收并保持着电池额定容量所需的电解液,并在整个寿命期间保持其高的吸液率;

II. 表面积大,孔隙率高。只要电液贫乏就可以保证正极生成的氧气通过隔板扩散到负极,与负极上的海绵铅结合;

III. 孔径小,可以有效地防止电池短路和枝晶穿透;

IV. 化学纯度高,有害杂质少;

V. 有非常好的耐酸性和抗氧化性;

VI. 电阻率低。

4. 影响超细超细玻璃纤维隔板性能的主要因素:

I. 超细玻璃纤维化学组成的影响 玻璃棉化学成分是影响隔板性能的一个关键因素,它直接影响隔板的化学性能。

II. 超细玻璃纤维棉直径和长度的影响 超细玻璃纤维直径越小,表面积大,湿润性高,因此吸液速率大,隔板的孔径也小,抵抗枝晶穿透能力强,但其电阻值将相应升高,因此必须选择一个更佳的组合。玻璃纤维棉的长度也影响隔板的性能。棉长,纤维不易分散而发生絮聚,使得隔板不均匀;棉短,隔板均匀性能得到改善,但强度低因此也应该选择一个更佳的长度范围。

III. 超细玻璃纤维棉中有害杂质的影响 玻璃纤维棉中的杂质对隔板的性能有着直接的影响。玻璃纤维棉中存在铁、铜、镍等金属或金属离子将增加电池的自放电和析气量。因此必须选择有害杂质少的原料,才能确保隔板具有好的性能。

5. 隔板对电池性能影响 

      隔板的好坏将直接影响到电池的容量、充放循环寿命及自放电等性能。电池的剖析结果表明,影响电池循环寿命较低的主要原因是由于质量差的隔膜孔径比较大,孔径分布和厚薄又不均匀,所以随着充放电的进行,正极铅粉逐渐有少量地透过隔板到负极一边,而负极铅枝晶有可能穿透隔板,最后造成电池慢性短路,所以随着充放电的进行,电池的容量逐渐下降而失效。从寿命终止后电池解剖可以看到,隔板靠负极一边变红棕色,说明已有少量铅粉透过隔板。 值得强调的是,选用的隔板质量对防止电池慢性短路起着至关重要的的作用。较好的隔板具有良好的耐枝晶穿透、耐氧化能力,且孔径细小均匀,孔率大小适度,可明显地降低充电终止电流,延长电池电寿命和降低电池自放电的速率。

      隔板的电阻大小直接影响放电时工作电压和放电容量。电阻大的隔板造成电池放电时工作决压下降,电池的放电容量也低。因此我们使用的电池隔板电阻一定要小。 综上所述,我们认为电池隔板的优劣是影响铅蓄电池充放电寿命、自放电的大小、容量的高低的一个极其重要的因素,因此在蓄电池生产过程中,应根据不同电池的特性,合理地选择所需要的电池隔板。

相关标签:

移动端网站